广告

首次涉足3D封装,AMD公布3D V-Cache技术细节

2021-08-24 16:28:41 综合报道 阅读:
AMD 的 3D V-Cache 标志着该公司首次涉足 3D 封装,该公司在 Hot Chips 33 上的演示中分享了其制造工艺背后的更多细节。

AMD 的 3D V-Cache 标志着该公司首次涉足 3D 封装,该公司在 Hot Chips 33 上的演示中分享了其制造工艺背后的更多细节。msdednc

msdednc

3D V-Cache 使用了一种新颖的混合键合技术,融合了额外的 64MB 7nm SRAM 缓存垂直堆叠在 Ryzen 计算小芯片的顶部,使每个 Ryzen 芯片的 L3 缓存数量增加三倍。 msdednc

msdednc

这项新技术可以为每个芯片提供高达 192MB 的 L3 缓存,并且 AMD 演示了 Ryzen 9 5900X 使用新缓存在 1080p 游戏中获得了 15% 的性能提升,这大致是我们可以从新的缓存中获得的性能。msdednc

msdednc

CPU 微架构和/或进程节点。但是,AMD 使用与标准 Ryzen 5000 型号相同的 7nm 节点和 Zen 3 架构完成了这一壮举。这一进步还伴随着芯片顶部堆叠的单个裸片——AMD 表示未来它可以堆叠不止一层,这将进一步提高容量。msdednc

AMD 在展示后透露,它可以通过新的 3D V-Cache 芯片实现与标准 Ryzen 型号类似的产量,这意味着它已经跨越了带来芯片所需的障碍,这些芯片将于今年年底投入生产,到市场。 msdednc

msdednc

msdednc

AMD 使用台积电的 SoIC 工艺将计算芯片顶部的 SRAM 小芯片与连接两个芯片的 TSV 的直接铜对铜电介质接合融合在一起。这种技术不使用焊料微凸点来连接两个芯片,从而实现了更密集、更高效的互连,其互连密度是 2D 小芯片的 200 倍。msdednc

台积电采用两相键合技术将两个芯片熔合在一起。第一阶段在室温下使用亲水性电介质到电介质键合工艺,然后对电介质连接进行退火键合。第二阶段是通过固态扩散形成键的直接铜对铜键合。AMD 表示,该技术使用类似硅晶圆厂的制造技术,后端类似于 TSV,这意味着生产流程类似于常规芯片的生产流程。 msdednc

AMD 将 SRAM 芯片保持在底层 L3 缓存的中央,以减少 SRAM 暴露于 CPU 内核的热量。此外,AMD 使用相同的混合键合工艺在 CPU 内核上放置结构硅,从而为小芯片创建统一的高度,有助于冷却芯片。 msdednc

相对于微凸点 3D 连接,AMD 表示 3D V-Cache 的互连效率是互连效率的三倍,每比特能耗不到三分之一,互连密度提高 15 倍,以及更好的信号和功率传输特性。 msdednc

msdednc

 msdednc

msdednc

AMD 的方法在两个芯片之间提供 2 TB/s 的吞吐量。该公司表示,延迟影响很小,并且在更高容量的 L3 缓存的标准范围内(缓存的原始访问时间随容量扩展)。msdednc

第一张图显示了三种不同互连方法之间的互连密度。虽然 AMD 的新互连具有 9 微米 (μm) 的间距(TSV 之间的距离),但标准 C4 封装的间距为 130 微米,而 Microbump 3D 的间距为 50 微米。msdednc

相比之下,英特尔出货的第一代 EMIB 连接的间距为 55 微米,而其将于 2023 年推出的第二代 EMIB 的间距为 45 微米。然而,英特尔即将推出的 Foveros Direct 是最直接可比的互连技术,英特尔声称它在 2023 年底上市时的间距将低于 10 μm。同时,台积电的 9 μm 混合键合将在明年早些时候上市AMD 的 3D V-Cache 处理器。 msdednc

msdednc

AMD 当前的内存逻辑只是该行业更广泛趋势的开始。随着 TSV 间距在连续几代技术中改进,它将解锁其他更精细的堆叠技术,例如 CPU 上的 DRAM/HBM,以及将整个 CPU 堆叠在 CPU 之上。msdednc

进一步的发展可以找到更精细的方法,例如将 CPU 核心堆叠在其他核心之上,并将核心堆叠在非核心之上(英特尔已经在 Lakefield 中做到了这一点)。更进一步,我们可以看到宏对宏的堆叠,这意味着核心微架构的各种元素相互堆叠,甚至 IP 折叠/拆分和电路切片。 msdednc

自然,这些遥远的技术还没有出现在绘图板上,将带来很多挑战,特别是在散热方面,但 AMD 和其他公司确实看到这些技术在未来出现。msdednc

msdednc

msdednc

msdednc

msdednc

msdednc

msdednc

msdednc

msdednc

Demi Xia编译msdednc

  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
  • 俄罗斯要绕过5G直接开发6G!投资300亿卢布够吗? 在全球通信技术竞争上,中国的5G发展速度遥遥领先于其他国家,更多国家开始在6G上较劲儿。今日,“俄罗斯决定绕过5G直接开发6G网络”登上热榜,引起网友热议。
  • GaN是否可靠? GaN产业已经建立一套方法来保证GaN产品的可靠性,因此问题并不在于“GaN是否可靠?”,而是“如何验证GaN的可靠性?”
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了