广告

生物仿真硅耳蜗实现神经拟态技术关键词捕捉

2021-04-12 10:04:06 Sunny Bains 阅读:
苏黎世神经科学研究所开发的动态音频传感器的核心是一个生物仿真硅耳蜗,仿真耳朵中毛细胞的功能。由硅耳蜗产生的事件串流可用于语音端点检测(关键词识别的第一阶段),类耳蜗图可以由神经网络读入并解码其含义。关键词捕捉是目前各种神经拟态技术的一个重要目标。

我们使用的传感和计算设备无处不在,而且会不断增多,设备始终处于工作状态,因此功率变得越来越重要。最好的例子就是放在办公桌上、口袋里以及散布家中各处的声控设备。关键词捕捉是目前各种神经拟态技术的一个目标。eiqednc

硅耳蜗

2020年,神经拟态工程学Misha Mahowald奖的获得者是Shih-Chii Liu教授及其团队,他们一直致力于研究低延迟、低功率传感器,用于语音检测。苏黎世神经科学研究所(INI)的Shi-Chii Liu及其团队开发的动态音频传感器拓展了这一市场(图1)。传感器的核心是一个生物仿真硅耳蜗。首先,它利用一组模拟带通滤波器将输入的声音滤入到各个频道,并在输出侧对其进行半波整流。这组电路仿真耳朵中毛细胞的功能。eiqednc

eiqednc

图1:A.在常见的音频系统中,声音首先通过模数转换器转换成数字信号,然后使用数字快速傅立叶变换(FFT)和带通滤波(BPF)提取信号特征。这些信号由数字信号处理器(DSP)运行语音端点检测(VAD)或自动语音识别算法进行处理。B.在苏黎世INI的动态音频传感器中,接收信号为模拟音频频带,其特征和变化被并行编码成一系列的异步尖峰信号(事件),随后进行处理。eiqednc

这一过程类似于生物学中让不同通道为大脑的处理做好准备。在人耳中,神经节细胞将信号快速编码为一串化学离子;在硅耳蜗中,则被转换成电尖峰信号。这一步可以通过使用常用的IF神经元模型或异步增量调制器(ADM)来完成:ADM将信号与两个阈值进行比较,并在信号超过阈值时发送事件——相当于信号特征提取器。因为忽略了不变的信号,从而减少了传递到下一级的冗余信息。eiqednc

从功率的角度来看,在没有任何活动时,硅耳蜗几乎不会消耗任何电量,随着活动的增加,尖峰信号的数量也随之增加。对于一直在听却很少进行处理的应用而言,这是一个巨大的优势;而当应用一直需要对相关内容进行解码时,则没有明显的功耗优势。eiqednc

由于这种音频传感器的功耗只有几微瓦,系统设计人员在设计中可以将其作为一个很有用的选择,以便提高电源效率。此外,该音频传感器是在连续时间内工作,尖峰之间的距离可近可远,因此它也支持非常高的动态范围。eiqednc

语音识别

这项工作的关键是证明硅耳蜗的有用性,具体而言,就是由硅耳蜗产生的事件串流可以用于语音端点检测(关键词识别的第一阶段)等实际应用中。Liu和她的团队成功地做到了,他们使用事件输出来创建2D数据帧,尖峰信号到达的直方图在5ms的帧上按频率排列。这即是类耳蜗图,可以由神经网络读入并解码其含义。eiqednc

“IEEE ISSCC社群对在传感器上使用深度网络非常感兴趣,音频边缘计算正在兴起,深度网络出现得非常及时。”Liu说,“现在已经有很多利用低功耗专用集成电路(ASIC)进行关键词识别的论文,但这些论文都采用类似频谱图的常规功能。我们的一个目标是要证明混合方案(混合模拟信号设计)可以提供更低的功率,减少响应延迟。”eiqednc

去年INI发布了一段视频,展示了数字识别系统。该系统现在仍处于开发初期,还不是绝对可靠。Liu的团队成员还有Minhao Yang、Chang Gao、Enea Ceolini、Adrian Huber、Jithendar Anumula、Ilya Kiselev和Daniel Neil,多年来他们还研究了传感器融合,将音频和视频信息结合起来,以进行更可靠的分类。他们一直遵循初期的设计准则来决定什么时候应该选择模拟传感器,什么时候应使用数字传感器。eiqednc

eiqednc

图2:Misha Mahowald是地址事件表示法(AER)的发明者之一,“神经拟态工程奖”就是以她的名字命名的。eiqednc

他们的另一个目标是提高数据采集系统(DAS)的电源效率和性能,包括利用源极跟随器实现带通滤波器,以及设计模拟特征提取器。eiqednc

减少模拟电子器件易变性的影响是另一个重要的研究领域。为了解决这个问题,Liu及其团队设计了一个硬件仿真器。他们表示,与Cadence Virtuoso这样的商用软件相比,该仿真器可以更快地测试这些问题。使用软件而非硬件来训练二进制神经网络进行分类,能够准确预测多种测试芯片的分类性能。Liu及其团队正在考虑在系统中增加噪音来测试其易变性,使设计过程更加稳健。eiqednc

Mahowald奖

Liu是神经拟态工程学的早期研究者之一,她在加州理工Carver Mead的实验室工作过,是苏黎世神经信息学研究所的创始人之一,当时研究组许多人员离开加州前往苏黎世。Mahowald(图2)也曾在该实验室工作。eiqednc

在获得该奖项时,Liu说:“我们很荣幸能够获得这个奖项,特别是与这么多神经拟态工程学的优秀研究人员一起。这项工作建立在数十年早期硅耳蜗设计的基础上,是Dick Lyon、Carver Mead、Lloyd Watts、Rahul Sarpeshkar、Eric Vittoz和Andre van Schaik的工作的延续。eiqednc

谈到神经拟态工程学的重要性,她说:“即便摩尔定律走到尽头,数字计算的能效仍比生物学的落后,只有其千分之一。因此,DAS这类混合模拟电子系统能达到什么样的效率比以往任何时候都更加重要。”eiqednc

(本文授权编译自EDN姐妹网站EETimes,原文参考链接:Allowing Machines to Listen, and Understand,由Jenny Liao编译)eiqednc

本文为《电子技术设计》2021年4月刊杂志文章,版权所有,禁止转载。免费杂志订阅申请点击这里eiqednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 高通推断:苹果成功自研5G基带芯片,明年见 高通CEO兼总裁克里斯蒂亚诺·阿蒙表示,苹果与高通至今尚未讨论过2024年的5G基带芯片订单一事,他推测这可能代表苹果打算在2024年推出的iPhone 16系列中,开始采用自家研发的5G基带芯片。
  • 谷歌支持LTE的Pixel Watch BoM 报告:成本123美元,三星占 据EDN电子技术设计报道,根据Counterpoint的材料清单报告显示,支持 LTE 的 Pixel Watch 的制造成本为123美元。此版本的Pixel Watch发售时售价为 399 美元,成本价格比零售价低约276 美元。
  • 使用SiC和GaN创建面向未来的电力电子器件 随着碳化硅(SiC)和氮化镓(GaN)等宽禁带器件的推出,电力电子技术发生了翻天覆地的变化。事实上,这些材料的特性使其特别适合在高压和高开关频率下所运行的应用,并能提供比最先进的硅基功率器件更好的效率和散热管理。
  • 如何大幅提高物联网设备的电池能效 本文探讨了如何使物联网(IoT)设备更加节能。在重点介绍毫微功耗运输模式和睡眠模式的关键作用之前,快速回顾了电池管理。 最后,提供了一种新的解决方案,与传统方法相比,它可以更好地优化电池管理的这两个方面,从而降低功耗水平和电路板空间。
  • 晶圆厂联手封测厂,为供应链赋予新意 在半导体产业日益关注封装技术创新,以超越芯片微缩的困境之际,晶圆厂联手封测厂的合作伙伴关系将支撑起下一代封装技术,并彰显封装技术在半导体供应链的重要意义...
  • 称可超越ChatGPT,微软推出新人工智能模型——Kosmos-1 微软推出了 Kosmos-1,据称它是一种多模式大型语言模型 (MLLM),不仅可以对语言提示做出反应,还可以对视觉线索做出反应,可用于一系列任务,包括图像说明、视觉问题回答等等。
  • 风禾尽起!忆芯科技高端企业级主控芯片及方案全球首发! 忆芯科技在国产高端企业级SSD赛道上,再迎来新里程碑——“风禾尽起  忆芯科技高端企业级芯片及方案发布会”在合肥天鹅湖大酒店隆重举行,面向全球正式首发全新一代高端企业级SSD主控芯片及方案。
  • MWC 2023落下帷幕,盘点国产厂商的那些亮眼表现 MWC 2023(世界移动通信大会2023)于2月27日在巴塞罗那正式向全球移动产业伙伴开启,大会也于3月2日正式落下帷幕。展会持续五天,根据官方数据统计,2023年MWC有2000多家全球厂商参展,中国有以OPPO、荣耀为代表的共计28个国产厂商参展。本次展会,各大厂商纷纷拿出自己的看家本领,可谓是亮点多多,今天就带大家一起看看展会上国产厂商展现的那些亮眼技术吧~
  • 维持ChatGPT运行将需要超过3万块Nvidia显卡 据TrendForce的最新预测,人工智能(AI)将成为Nvidia的最大收入来源之一。该研究公司估计,OpenAI的ChatGPT最终将需要超过3万块Nvidia显卡的算力以维持运行。
  • 利用无线BMS实现智能电池生态系统解决方案 有关电池创新的新闻往往会突出新的电池封装概念和新材料,它们有朝一日可能能够比当今的锂电池技术储存更多的电量。电池的另一个部分——电池管理系统(BMS)——则往往不为人所知,但却需要跟进并以此来支持电池创新。
  • 软件定义电源让用户可控 传统上,AC/DC电源设计只能针对特定负载和线路条件进行优化。这源于在常用固定频率下的经典模拟控制和简单脉宽调制技术,这些限制通常会导致在极端工作范围内产生更高的元器件应力。
  • IEC 61000-4-3标准的步进频率 本文重点在于讨论如何使用更简略的步骤进行IEC 61000-4-3标准的EMI/EMC测试,以加快产品开发时间...
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了