广告

用碳化硅MOSFET设计一个双向降压-升压转换器

2020-12-21 17:36:22 Power Electronics News编辑团队 阅读:
随着电池和超级电容等高效储能设备的大量使用,朝向更好的电流控制发展成为一种趋势。双向DC/DC转换器可以保持电池健康,并延长其使用寿命。

电池供电的便携设备越来越多,在今日生活中扮演的角色也越来越重要。这个趋势还取决于高能量储存技术的发展,例如锂离子(Li-ion)电池和超级电容器。这些储能设备连接到可再生能源系统(太阳能和风能),收集和储存能源,并稳定提供给用户,其中一些应用需要快速充电或放电。7JWednc

这里我们将要介绍的是一种双向DC-DC转换器,其双向性允许电流产生器同时具备充电和放电能力。双向控制器可以车用双电池系统提供出色的性能和便利性。而且在降压和升压模式中采用相同的电路模块大幅降低了系统的复杂性和尺寸,甚至可以取得高达97%的能源效率,并且可以控制双向传递的最大电流。7JWednc

电气原理

图1显示了简单但功能齐全的电气图,其对称配置可让用户选择四种不同的运作模式。它由四个级联降压-升压转换器的单相象限组成,包括四个开关、一个电感器和两个电容器。根据不同电子开关的功能,电路可以降低或升高输入电压。开关组件由碳化硅(SiC) MOSFET UF3C065080T3S组成,当然也可以用其他组件代替。7JWednc

7JWednc

图1:双向降压-升压转换器接线图。7JWednc

四种运作模式

用户可以简单配置四个MOSFET来决定电路的运作模式,具体包括如下四种:7JWednc

  • 电池位于A端,负载位于B端,从A到B为降压;
  • 电池位于A端,负载位于B端,从A到B为升压;
  • 电池位于B端,负载位于A端,从B到A为降压;
  • 电池位于B端,负载位于A端,从B到A为升压;

在该电路中,SiC MOSFET可以三种不同的方式运作:7JWednc

  • 导通,对地为正电压;
  • 关断,电压为0;
  • 脉动(Pulsating),具方波和50% PWM;其频率应根据具体运作条件进行选择。

根据这些标准,SiC MOSFET的功能遵循图2中所示的表格。7JWednc

7JWednc

图2:四个SiC MOSFET的运作模式和作用。7JWednc

模式一:降压(Buck)A-B

选择模式一,电路做为降压器,即输出电压低于输入电压的转换器。这种电路也称为“step-down”,其电压产生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET组件。具体配置如下:7JWednc

  • SW1:以10 kHz方波频率进行切换;
  • SW2:关断,即断开开关;
  • SW3:关断,即断开开关;
  • SW4:关断,即断开开关。

图3中显示了Buck A-B模式下的输入和输出电压;其输入电压为12V,输出电压约为9V,因此电路可用作降压器。其开关频率选择为10kHz,输出端负载为22Ohm,功耗约为4W。7JWednc

7JWednc

图3:Buck A-B模式下的输入和输出电压。7JWednc

模式二:升压A-B

模式二提供升压操作,即作为输出电压高于输入电压的转换器。这种电路也称为“step-up”。 电压产生器需连接在A侧,而负载连接在B侧。负载效率取决于所采用的MOSFET组件。具体配置如下:7JWednc

  • SW1:导通,即关闭开关(闸极供电);
  • SW2:关断,即断开开关;
  • SW3:关断,即断开开关;
  • SW4:以10kHz方波频率进行切换。

图4显示了Boost A-B模式下的输入和输出电压,其输入电压为12V,输出电压约为35V,因此电路可用作升压器。其开关频率选择为10kHz,输出端负载为22Ohm,功耗约为55W。7JWednc

7JWednc

图4:Boost A-B模式下的输入和输出电压。7JWednc

模式三:降压B-A

选择模式三,电路也做为降压器运作,即输出电压低于输入电压的转换器。其电压产生器需连接在B侧,而负载连接在A侧,负载效率取决于所采用的MOSFET组件。具体配置如下:7JWednc

  • SW1:关断,即断开开关;
  • SW2:关断,即断开开关;
  • SW3:以100 kHz方波频率进行切换;
  • SW4:关断,即断开开关。

图5显示了Buck B-A模式下的输入和输出电压。其输入电压为24 V,输出电压约为6.6V,因此电路可用作降压器。其开关频率选择为100kHz,输出端负载为10Ohm。7JWednc

7JWednc

图5:Buck B-A模式下的输入和输出电压。7JWednc

模式四:升压B-A

选择模式四,电路作为升压器运作,即输出电压高于输入电压的转换器。这种电路也称为“step-up”,其电压产生器需连接在B侧,而负载连接在A侧。负载效率取决于所采用的MOSFET组件。具体配置如下:7JWednc

  • SW1:关断,即断开开关;
  • SW2:以100 kHz方波频率进行切换;
  • SW3:导通,即关闭开关(栅级供电);
  • SW4:关断,即断开开关。

图6显示了Boost B-A模式下的输入和输出电压。其输入电压为18V,输出电压约为22V,因此电路可用作升压器。其开关频率选择为100 kHz,输出端负载为22 Ohm,功耗约为22W。7JWednc

7JWednc

图6:Boost B-A模式下的输入和输出电压。7JWednc

结语

电路的效率取决于许多因素,首先是所采用的MOSFET导通电阻Rds(on),它决定了电流是否容易通过(如图7)。另外,这种配有四个功率开关的电路需要进行认真的安全检查;如果SW1和SW2 (或SW3和SW4)同时处于导通状态,则可能造成短路,从而损坏组件。7JWednc

7JWednc

图7:Boost A-B模式下,电感上的脉动电压和电流曲线图。7JWednc

 7JWednc

编译:Judith Cheng7JWednc

责编:Luffy Liu7JWednc

(参考原文:Let’s build a Bidirectional Buck-Boost Converter with SiC MOSFET )7JWednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 计算中常见的RMS和RSS,你真的了解吗? RSS与RMS看起来很相似,但概念截然不同···
  • 苹果将终止自研5G基带芯片,仍要继续依赖高通 据报道,苹果将停止内部 5G 调制解调器的开发,并可能继续依赖高通。根据一份新报告,苹果似乎远未实现其目标,因为它已决定停止开发内部 5G 调制解调器。这些报道现阶段尚未得到证实,但多个消息来源报道了类似的情况。
  • 首款背接触微米光伏电池问世,阴影效应降低95% 加拿大渥太华大学领导的国际科研团队,研制出了全球首款背接触微米光伏电池,相较于普通的光伏电池,这种背接触电池正面无栅线,正负极全部挪到了电池背面,能让太阳能电池板吸收更多太阳光···
  • 首款国产LPDDR5存储芯片来了!已在小米、传音等品牌机型 长鑫存储面向中高端移动设备市场,正式推出LPDDR5系列产品,成为国内首家推出自主研发生产的LPDDR5产品的品牌,不仅进一步完善长鑫存储DRAM芯片的产品布局,更实现了国内市场零的突破。
  • 5G和天线模块的演变 新的5G用例和功能改变了5G天线模块的格局,使其从智能手机和平板电脑中使用的专用、通常是定制设计和开发的便携式移动设备硬件,转变为集成到传感器平台、自主移动机器人(AMR)、工业控制设备、增强现实/虚拟现实(AR/VR)头戴设备/系统以及汽车平台中的物联网模块···
  • 西门子推出HEEDS AI Simulation Predictor和Simcenter 西门子的HEEDS AI Simulation Predictor解决方案能够帮助企业发挥数字孪生优势,通过内置准确性意识的人工智能技术,实现产品优化;基于历史仿真研究中积累的知识和经验,更快地交付创新的高性能设计;Simcenter Reduced Order Modeling解决方案利用高精度仿真或测试数据,训练并验证AI/ML模型,使其能够在几分之一秒内做出预测
  • 如何正确使用以确保舌簧继电器的可靠性? 当在指定的操作参数范围内使用时,舌簧继电器可以执行数百亿次操作,而性能变化很小或没有变化。例如,每天每小时运行 100 次(24 小时周期),大约需要 1141 年才能达到 10 亿次运行的里程碑。增加操作频率不应引起关注,因为要达到每分钟 100 次操作 19 年后才能达到相同的里程碑,而每秒 100 次操作则需要近 4 个月。
  • 龙芯3A6000问世,国产自研CPU最新里程碑 龙芯3A6000采用的是我国自主设计的指令系统和架构,无需依赖任何国外授权技术,是我国自主研发、自主可控的新一代通用处理器,标志着我国自主研发的CPU在自主可控程度和产品性能方面达到新高度,性能达到国际主流产品水平···
  • 存储技术新突破,10PB单盘使用寿命超过5000年 这项技术来自于德国初创公司Cerabyte,这家公司利用一种在陶瓷镀膜玻璃的陶瓷物质层上创建微孔的技术,来实现这一目标···
  • 电力电子科学笔记:PNP和NPN晶体管 在前面教程所学知识的基础上,我们现在开始学习晶体管这一重要的电子元件。
  • 台积电前研发副总裁:华为可在现有DUV设备上制造5纳米芯 被誉为"芯片大师"的台积电前研发副总裁林本坚表示,华为在现有的DUV设备上制造5纳米芯片组是可行的。
  • 超过现有材料四倍,新型碳材料超级电容器创下储能纪录 近日,美国橡树岭国家实验室(ORNL)的研究人员在机器学习的指导下,设计了一种创纪录的碳基超级电容材料,它储存的能量是当前最佳商业材料的4倍···
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了