广告

一文带你了解传输线理论

2023-01-04 10:00:55 Excelpoint 阅读:
在现代通信技术中,每当在传输高速信号的时候,特别是射频微波信号传输过程中,总是不可避免的遇到因为回波损耗和辐射损耗所造成的信号衰减。如何改善这一问题?技术型授权代理商Excelpoint世健的工程师Wolfe Yu对传输线理论进行了科普。

在现代通信技术中,每当在传输高速信号的时候,特别是射频微波信号传输过程中,总是不可避免的遇到因为回波损耗和辐射损耗所造成的信号衰减。如何改善这一问题?技术型授权代理商Excelpoint世健的工程师Wolfe Yu对传输线理论进行了科普。6Q5ednc

各种传输线路的优劣分析

为了将电磁波束缚在一定横截面内导通,防止信号向外部空间辐射,人们通常采用一种被称为“金属波导”的导行系统。6Q5ednc

6Q5ednc

图1 金属波导的导行系统6Q5ednc

金属波导其实就是一个空心的金属管,它的特点是对于高频信号衰减少、传输效率高。但是波导的缺点是只能导通高频信号,对于中、低频信号无法传输。这和传统的双导线系统正好相反。6Q5ednc

那么,是否有一种传输线,可以实现所有频段全覆盖呢?为了解决这个问题,科学家提出了新的解决方案——微带传输和同轴传输技术,本文主要讨论同轴传输技术。6Q5ednc

  6Q5ednc

图2 同轴线传输线的导行系统6Q5ednc

同轴线传输是由分离导体柱构成,可以传播横电磁波,从两分离的导体柱结构和传递横电磁波的角度来看,同轴线传输技术信号衰减相对较少,覆盖频段宽,理论上可以覆盖全频段,是传输信号的较优选择。6Q5ednc

同轴线传输还有一个优势,高频电磁波信号通过空间电场传输,主设备可以同时通过同轴线传输电能给从设备,这被称之为PoC(Power-over-Coax), PoC和PoE的工作原理类似。6Q5ednc

6Q5ednc

图3 同轴传输线供电原理框图6Q5ednc

信道均衡技术

信道码间串扰

在数字通信系统中,由于多径效应、信道带限等因素,在接收端会形成码元拖尾。拖尾部分与相邻码元叠加,形成码间干扰,导致采样信号畸变,判决错误。6Q5ednc

6Q5ednc

图4 码间串扰引起信号丢失及采用信道均衡技术恢复码元6Q5ednc

为了提高衰落信道中的通信系统的传输性能,工程师们往往采取的一种抗衰落措施,来消除或减弱宽带通信时的多径时延带来的码间串扰(ISI)问题,这被称为“信道均衡”。6Q5ednc

传输线网络模型

信道均衡是为了消除码间干扰,它的核心思想是对信道或整个传输系统特性进行补偿,通过补偿网络使传输线阻抗和负载阻抗相等。6Q5ednc

6Q5ednc

图5 传输线等效模型6Q5ednc

在高速传输系统中,传输线会产生很多寄生参数,可以采用阻容器件来建立等效分段传输模型。6Q5ednc

6Q5ednc

根据信号的传输模型,高速信号在经过长传输线之后,输出信号会产生畸变。如果不对信号作处理,信号将无法准确识别,形成码间干扰串扰。6Q5ednc

6Q5ednc

图6传输线信号畸变引起码间串扰6Q5ednc

阻抗匹配的具体实现方法是,在传输线的基础上,再添加一个传递函数,使整个传输系统实现阻抗匹配,这被称为“全通滤波”或者“均衡电路”。6Q5ednc

6Q5ednc

均衡传输实现方法

为了消除码间干扰,使电路达到均衡效果,一般采用两种方法,一种是预加重、另一种是去加重。6Q5ednc

预加重技术就是增强信号上升沿和下降沿处的幅度,其它地方幅度不变。而去加重是保持信号上升沿和下降沿处的幅度不变,其他地方信号减弱。6Q5ednc

根据上述分段传输线传输模型,一般会在发送端做前馈均衡FFE(Feed Forward Equalizer),在接收端做判决反馈均衡DFE(Decision Feedback Equalizer)。6Q5ednc

 6Q5ednc

图7 均衡传输技术建模6Q5ednc

前馈均衡FFE是SerDes系统中最常用的均衡技术。通常SerDes的发送端会使用FFE技术对信号进行预均衡。FFE通过将延时的信号按不同的权重(w-1,w0,…,wn)相加。控制权重的大小调整均衡强度。6Q5ednc

6Q5ednc

图8 前馈均衡的预加重原理6Q5ednc

判决反馈均衡DFE也是通过数字高频滤波器实现的,与FFE不同的是,DFE是一种非线性均衡技术:判决后的信号为数字信号。因此,DFE可以只放大高频信号,而不放大高频噪声。6Q5ednc

6Q5ednc

图9 判决反馈去加重原理6Q5ednc

在DFE电路中,通常的做法,一般会在前级加上一个连续时间线性均衡CTLE(Continuous Time Linear Equalizer),CTLE的作用是作为高通滤波器和低通滤波器配合,实现信号的全通滤波。6Q5ednc

6Q5ednc

图10 同轴均衡传输技术理论可以覆盖全频段6Q5ednc

Microchip基于CoaXpress一揽子解决方案

Microchip推出的一种基于CoaXpress的视频传输方案就是基于均衡法的同轴传输。6Q5ednc

EQCO125X40集成均衡器、CDR和电缆驱动。它可以实现在一根电缆或PCB跟踪对上发送/接收信号,在1.25 Gbps/12.5 Gbps 8b/10b编码下行传输,以及20.833 Mbps/41.666 Mbps 8b/10b编码的上行传输。在ADAS图传应用中,视频信号通过同轴线进行无损耗传输给高算力的平台做进一步处理,这种算法已经被越来越多的客户所接受。6Q5ednc

6Q5ednc

图11 Microchip基于CoaXpress技术的图传解决方案6Q5ednc

这颗芯片搭载在基于Microchip PolarFire视频平台上,客户可以利用Microchip提供的免费IP安装包轻松完成产品开发,缩短开发流程,其授权代理商Excelpoint世健能提供相应的技术支持和指导,帮助客户更高效地进行产品开发。6Q5ednc

责编:Demi
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 一块生命体征监测手表,可保癫痫患者安心无忧 想象一下,如果癫痫患者能够预测自己何时有可能发病,就可以提前采取预防措施。或者,作为医护人员,可以从癫痫患者的生命体征监测中获取相关数据,让患者在家就直接获得个性化的治疗方案。
  • 三星推出高性能PCIe 4.0 SSD,能效暴增70% 1月12日消息,三星官方正式发布高性能PCIe 4.0 NVMe SSD——PM9C1a,该固态硬盘使用三星5nm高端工艺和第七代V-NAND技术。
  • 使用机器视觉提高制造性能 到2030年,商用机器视觉预计将成为一个价值近260亿美元的全球产业。本文将介绍如何在制造业中使用机器视觉以提高效率、竞争力和面向未来的方法。
  • 恒电势器模块支持实现电化学生物传感器护理点诊断 新冠病毒的出现,引发了人们对电化学生物传感器的兴趣和随之而来的创新浪潮。借助更好的生物检测传感器和读取器,医疗保健提供者能够更快做出正确的诊断和治疗,不止是针对新冠,还包括从疟疾和结核病到细菌性感染等许多其他疾病。并不是说,电化学生物传感器创新者们忽略了这一需求,但这期间出现的机遇是不言而喻的。
  • ADI太阳能模拟器方案 太阳能模拟器是模拟太阳光谱和光强的一种光源设备,可以在高精度拟合太阳光谱分布的前提下,实现不同的太阳辐照度等条件,满足测试研究对太阳辐照的特殊需求。使用太阳能模拟器能够克服气候多变性所造成的不便,全年24小时在室内对太阳能产品进行测试。
  • 出色的音频性能如何实现? 即插即用的数字D类放大器少 新一代即插即用的数字D类音频放大器的性能远远优于传统的模拟D类放大器。更重要的是,数字D类放大器还具有低功耗、低复杂性、低噪声和低成本的优势。
  • 高能量密度、大容量的水系锌电池取得重要进展 据中国科学技术大学网站消息,该校化学与材料科学学院陈维教授课题组,设计了一种稳定的金属/金属—锌合金异质结界面层,实现了大面容量(200mAh/cm2)下无锌枝晶的稳定沉积和溶解,并达到274Wh/kg的锌溴电池能量密度。
  • 车规碳化硅功率模块——衬底和外延篇 谈到800V母线系统,让我们聚焦到其中的核心功率器件碳化硅功率模块,由于碳化硅得天独厚的优势,使得它非常适合用来制造高耐压、高结温、高速的MOSFET,这三高恰好契合了800V母线系统对于核心的功率器件的要求。
  • 使用DMA加速可穿戴设备的外设监控 本文介绍了在嵌入式系统编程中使用直接内存访问(DMA)的用例、优点和缺点。介绍了DMA如何与外设和内存模块交互以提高CPU的运行效率。还将向读者介绍不同的DMA总线访问架构,以及各自的优势。
  • 碳化硅器件动态特性测试技术剖析 碳化硅功率器件作为新一代功率半导体器件,以其优异的特性获得了广泛的应用,同时也对其动态特性测试带来了挑战,现阶段存在的主要问题有以下三点:测试难、测得对不对,以及测试结果是否能发挥作用。
  • 无线电池管理系统与高性能电动汽车的未来 ADI公司开发出了一项突破性的技术——无线电池管理系统(wBMS),该项技术能够省去电池线束和相关线缆,从而减轻电动汽车电池的重量,同时还能提高电池的可靠性。
  • 如何为汽车智能配电系统选择功率开关管 汽车电动化和数字化的大趋势包括区域控制架构、功率芯片驱动数字化、电池管理系统、功率电子和电源/能源管理。电控单元(ECU)对更大功率、更高安全性的需求日益增长,推动系统设计人员去开发智能配电解决方案。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了