广告

神经刺激器利用磁致伸缩效应和压电效应实现植入式能量传递

2021-02-18 11:02:15 Bill Schweber 阅读:
神经刺激器利用磁致伸缩效应和压电效应实现植入式能量传递
最近,莱斯大学的一个研究小组制作并测试了他们称为第一台由外部磁场驱动的能量捕获和转换设备。研究人员利用这种能量来驱动神经刺激器产生不同的波形和模式,用于治疗帕金森氏症、抑郁症、疼痛和强迫症。

工程师习惯处理各种“效应”,其中一些众所周知,另一些则鲜为人知。例如,众所周知的有压电效应和趋肤效应,鲜为人知的有柯恩达效应。无论是哪种效应,这些基于物理学的现象通常是设计传感器、特殊材料和一些独特功能的理论基础。LRPednc

最近,莱斯大学的一个研究小组制作并测试了他们称为第一台由外部磁场驱动的能量捕获和转换设备。它不会受人体组织影响而产生较大衰减,可避免在使用RF、超声波、光甚至电磁线圈时出现人体吸收的问题以及空气、骨骼和身体组织交界处的阻抗差异。LRPednc

研究人员利用这种能量来驱动神经刺激器产生不同的波形和模式,用于治疗帕金森氏症、抑郁症、疼痛和强迫症。LRPednc

能量传递装置实际上利用了两种不相关的物理现象:磁致伸缩效应(磁性材料的一种特性,在磁化过程中形状或尺寸发生改变)和压电效应,可以将磁场转换为电场和电压。LRPednc

该研究小组使用了一种材料,通过薄膜的磁致伸缩层和压电层之间的机械耦合来产生电压,而不是通过植入线圈产生电压。变化的外部磁场在磁致伸缩层中产生应力,该应力继而作用在压电层上以产生电压。组合磁电子(ME)器件可由大约几毫特斯拉的弱磁场驱动,如图1所示。LRPednc

LRPednc

图1:(a)使用磁致伸缩器件对自由活动的小鼠进行无线神经刺激;(b)共振响应曲线显示,当磁场频率在171kHz与声学共振匹配时,会产生最大电压;(c)使用永磁体的器件测试装置会产生偏置场,电磁线圈则会产生交变磁场。(图片来源:莱斯大学)LRPednc

为了提高能量传递效率,研究人员还使用永磁体或电磁体来产生恒定偏置场。由于磁致伸缩材料中的应力是磁场强度的S形函数,因此当磁场在S形的中点附近振荡时,交变磁场产生的电压变化最大(图2)。LRPednc

LRPednc

图2:磁致伸缩薄膜的输出电压与偏置场的关系。适度的磁偏置场会显著增加最大共振电压。(图片来源:莱斯大学)LRPednc

研究人员已将电源和刺激器一起植入啮齿动物的大脑中,以调用各种类型的神经刺激来对其进行测试。整个单元——电源子系统和神经刺激器——比一颗米粒还要小,必须完全定制。一篇详细而明晰的论文“Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies”(应用于治疗频率微型无线神经刺激器的磁电材料)已在Neuron(神经元)期刊上发表,生动地解释了替代性能量传递技术带来的挑战。LRPednc

这是能量传递还是能量收集?由于外部磁场并不是“自然存在”的,不能就地使用,所以我不确定它算不算真正的收集。从另一个角度来看,它当然具有收集的某些属性,至少在概念上如此。我们且把它称做能量传递与收集的结合吧。LRPednc

你是否曾使用过一种可以视为能量收集的方案,但实际上更像是一种独特的能量传递技术?你当时必须解决且最后确实解决了哪些问题?LRPednc

(本文授权编译自EDN英文网站,原文参考链接:Neural stimulator device combines two “effects” for implantable energy transfer,由Jenny Liao编译)LRPednc

本文为《电子技术设计》2021年2月刊杂志文章“神经刺激器利用两种‘效应’实现植入式能量传递”,版权所有,禁止转载。免费杂志订阅申请点击这里LRPednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
Bill Schweber
EE Times/EDN/Planet Analog资深技术编辑。Bill Schweber是一名电子工程师,他撰写了三本关于电子通信系统的教科书,以及数百篇技术文章、意见专栏和产品功能介绍。在过去的职业生涯中,他曾担任多个EE Times子网站的网站管理者以及EDN执行编辑和模拟技术编辑。他在ADI公司负责营销传播工作,因此他在技术公关职能的两个方面都很有经验,既能向媒体展示公司产品、故事和信息,也能作为这些信息的接收者。在担任ADI的marcom职位之前,Bill曾是一名备受尊敬的技术期刊副主编,并曾在其产品营销和应用工程团队工作。在担任这些职务之前,他曾在英斯特朗公司(Instron Corp., )实操模拟和电源电路设计以及用于材料测试机器控制的系统集成。他拥有哥伦比亚大学电子工程学士学位和马萨诸塞大学电子工程硕士学位,是注册专业工程师,并持有高级业余无线电执照。他还在计划编写和介绍了各种工程主题的在线课程,包括MOSFET基础知识,ADC选择和驱动LED。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 商务部暂停天然砂对台湾地区出口,台积电难受了 据EDN电子技术设计了解,商务部网站8月3日早晨8点发布最新消息,表示将从即日起暂停天然砂对台湾地区出口。不少网友认为暂停天然砂对台湾地区的出口,此举将严重影响台湾的建筑业,实则影响不仅仅如此。台湾地区天然砂进口量的90%以上来自大陆,而台湾芯片占台湾2021年出口额的34.8%。网友称商务部暂停天然砂对台湾地区出口是捏到了台湾半导体制造业的七寸。
  • 华盛顿大学首创用人体热能为可穿戴电子设备供电 从健康和健身追踪器到虚拟现实设备,可穿戴电子产品已成为我们日常生活的一部分,但找到持续为这些设备供电的方法是一项挑战。华盛顿大学的研究人员开发了一种创新的解决方案:首创的柔性、可穿戴热电设备,可将体热转化为电能。
  • 深圳允许完全自动驾驶车辆上路,主驾无需坐人 据EDN电子技术设计引援央视财经报道,从8月1日开始,《深圳经济特区智能网联汽车管理条例》正式实施,智能网联汽车列入国家汽车产品目录或者深圳市智能网联汽车产品目录,这也让深圳成为了国内首个允许L3级别自动驾驶车辆合法上路的城市。
  • 理想ONE高速起火烧成光架,其1.2T三缸增程器曾被指隐藏 近期,网络平台上发布了一段理想ONE在行驶过程中,车辆出现起火的视频内容。现场拍摄的灭火后图片显示,该轿车过火后仅剩骨架,车辆前部增程器位置受损严重,车辆尾门已经在过火后从车身主体脱落。此前,曾有国内汽车媒体对一台行驶了10万公里的理想ONE的东安1.2T三缸增程发动机进行拆解,被指隐藏暗病。
  • 上海微系统所使用石墨烯纳米带研制出世界上最小尺寸的 非易失性相变随机存取存储器(PCRAM)被认为是大数据时代新兴海量存储的有希望的候选者之一。然而,相对较高的编程能量阻碍了 PCRAM 中功耗的进一步降低。利用石墨烯的窄边接触可以有效降低每个电池中相变材料的活性体积,从而实现低功耗运行。
  • 可解决工业自动化和IIoT挑战的MCU 工业自动化和工业物联网(IIoT)设计人员的性能要求不断变化。就MCU而言,他们希望获得更快的处理速度、更多的内存、更好的连接性和更多的安全功能。
  • 我国建成开通5G基站数达185.4万个 工信部近日透露,截至2022年6月底,中国5G基站数达到185.4万个,其中二季度新增基站近30万个,已建成全球规模最大、技术领先的网络基础设施,实现“县县通5G、村村通宽带”。。
  • 苹果发布2022财年第三财季业绩,营收829.59亿美元 Apple 今日公布了 2022 年第三财季的财务业绩。报告显示,苹果公司第三财季公布收入为 829.59亿美元,去年同期为 814 亿美元,同比增长2%;季度净利润为 194 .4亿美元,去年同期为217 亿美元,同比下降10.6%;其中,iPhone带来的营收406.7亿美元,同比增长3%。
  • 工程师开发出可以看到身体内部的贴纸 麻省理工学院的工程师设计了一种贴片,可以产生身体的超声图像。这种邮票大小的设备贴在皮肤上,可以提供 48 小时内脏器官的连续超声成像。
  • 美国参议院批准价值2460亿美元的芯片法案 美国参议院周三通过立法,以超过 750 亿美元支持国内半导体产业。GlobalFoundries、英特尔、三星代工厂、德州仪器、台积电和其他在美国建立半导体制造设施的公司或将受益。
  • 第三代半导体——碳化硅材料之制程与分析 SiC功率电子是加速电动车时代到来的主要动能。以SiC MOSFET取代目前的Si IGBT,不仅能使电力移转时的能源损耗降低80%以上,同时也可让芯片模块尺寸微缩至原本的1/10,达到延长电动车续航里程及缩短充电时间的功效。
  • 开源软件真的可靠吗? 乍看之下,采用开源软件似乎是个不错的办法,但归根究底,开源软件有几个特性可能会使其变得“邪恶”...
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了