广告

医学成像的五大AI技术趋势

2021-03-12 11:54:38 Dr. Ivan De Backer, IDTechEx技术分析师 阅读:
医学成像的五大AI技术趋势
自从2010年至2014年影像识别软件中引入了深度学习, AI医学成像诊断市场便进入了技术快速发展的阶段。本文描述了医学成像中AI影像识别技术的五大关键趋势。

人工智能(AI)公司不断完善和训练他们的算法,以改善使用医学诊断成像检测疾病的水平。LRYednc

到2030年,医疗诊断中人工智能的市场将超过30亿美元。根据IDTechEx 的“ 2020~2030年医疗诊断中的AI:影像识别,播放器,临床应用,预测”报告,到那时,由于AI能够比人类更高效地分析数据,医学影像识别AI的使用将增长近3,000%。通过简化影像分析过程,这项技术有望改善诊断方案,最大程度缩短治疗时间(图1)。LRYednc

LRYednc

图1: 影像识别AI是一种决策支持工具,可针对患者病情快速生成有效信息。(图片来源:IDTechEx)LRYednc

自从2010年至2014年影像识别软件中引入了深度学习, AI医学成像诊断市场便进入了技术快速​​发展的阶段。AI公司不断尝试扩充其产品功能和应用范围,以在竞争激烈的市场中增强自己的影响力。LRYednc

该行业的主要创新围绕着:提高数据的使用效率,提高AI技术的可用性,以及提高AI技术在放射科医生眼中的价值。本文描述了医学成像中AI影像识别技术的五大关键趋势。LRYednc

趋势一:实现高水平疾病检测

在评估影像识别AI对医学诊断的价值时,准确性是其首要考虑指标,AI公司正朝着实现高水平疾病检测的目标努力。目前,尽管AI有可能彻底改变疾病诊断的过程,但其价值仍低于大多数放射科医生的期望。LRYednc

许多AI公司优先考虑的是改进算法。例如,荷兰初创公司SkinVision成功提高了软件的疾病检测性能,以增强其作为决策支持工具的可信度。 2014年,SkinVision的应用程序检测到了81%的皮肤癌病例,人们认为这一比例还不足以准确地检测黑素瘤。到2019年,这一数据已攀升至95%,是市场上准确度最高的——远远超过皮肤科医生人工诊断70%至80%的准确性(图2)。LRYednc

如今,算法的准确性是其第一大卖点,算法准确性高的公司拥有极大的竞争优势。高准确性有助于他们的技术被医疗机构采用,因为采用自动化定量分析所带来的好处将超过改变工作流程引起的短期不便。LRYednc

LRYednc

图2: 医疗诊断中的影像识别AI:在不同疾病的检测中,算法诊断与人工诊断的表现进行比较。(图片来源:IDTechEx)LRYednc

趋势二:增加训练数据集的多样性来扩展软件适用性

AI公司越来越重视扩展其软件的适用性。目前,影像识别AI算法的局限性通常在于其应用限于特定人群。因此,如果患者资料与软件先前接触的数据类型不匹配,软件的疾病检测能力就会降低。LRYednc

为了解决这个问题,AI公司在算法训练中包含了更多样化的数据集。一个共识渐渐形成:训练数据应涵盖多种类型的患者,以便算法可以识别异常,无论患者是何种族、遗传背景或生理状况。例如,Lunit 公司的INSIGHT MMG软件检测乳腺癌的准确率为97%,这是因为该公司对其算法进行了训练,可以识别出不同密度和脂肪组织组成的乳房中产生的病变。LRYednc

AI技术能成功处理数量庞大的患者,这凸显了其技术和业务优势。随着软件适用性的扩展,其使用率将会提高,从而用于更多的患者。LRYednc

趋势三:高影像分辨率使算法性能最优

为使AI疾病检测性能最优并提高AI诊断的可靠性,获得高分辨率影像是关键。训练期间使用劣质数据会影响深度学习算法的进步过程和性能水平。模糊的影像会降低AI诊断的准确性,从而降低广泛应用AI的可能性。LRYednc

为此,AI公司正在寻找捕获更好影像的方法,以提高医疗诊断中影像识别AI的价值。用来评估或改善影像质量的AI工具已经商业化。例如,美国的Subtle Medical公司使用影像识别AI将不能进行分析的模糊影像转换为高分辨率的扫描图像。LRYednc

印度的Artelus使用了另一种方法,该公司开发了一种可以在采集影像后立即评估影像质量的系统,用于确定影像是否足以进行可靠的诊断,或是否应该重新拍摄影像。LRYednc

趋势四:从单个影像检测多种疾病

多种疾病的检测是影像识别AI应用的另一个重要趋势。公司以前更愿意专注于单一疾病的检测,因为这种方法的成本要低得多,耗时也要少得多。因此,现今许多AI分析工具能识别出的疾病种类有限。他们的算法可能会忽略或误解那些未学习过的疾病,导致误诊,因此这些AI工具在放射学实践中的价值并不是很大。LRYednc

有些医生需要多功能决策支持工具,为了增加产品对这些医生的吸引力,AI公司正在投入更多的资源,以便从单个影像或数据集中识别出多种疾病。例如,DeepMind Technologies和Pr3vent的解决方案就要从单个视网膜影像中检测出50多种眼部疾病,而VUNO的算法可以检测到12种疾病。LRYednc

对医院和AI公司而言,能够检测多种疾病的软件相较检测特定疾病的软件具有更大的价值。如果一次扫描检测出多种疾病,就可以减少患者确诊所需的检查次数,从而将医疗费用降至最低。能够检测多种疾病的软件适用范围更广,在医院可以作为日常诊断工具使用。LRYednc

趋势五:将AI软件集成到成像设备中

将影像识别AI软件直接集成到医疗扫描仪中变得越来越普遍。当前,放射科的AI软件通常是通过云平台部署,或是直接安装在医院的内部服务器上。采用这种做法,放射科需要适应新的工作流程,导致生产力降低,使医院更不愿意使用影像识别AI。LRYednc

AI公司越来越愿意直接将软件集成到扫描仪中,以促进医学影像分析的自动化。AI软件提供了强大的分析功能,使医院每日问诊人数达到最多,并能改善患者预后。这种做法已经越来越多了。最近的例子有,Lunit将INSIGHT 胸部X光检查(CXR)集成到GE Healthcare的胸腔护理套件中,以及MaxQ AI的颅内出血(ICH)检测技术被嵌入到飞利浦的计算机断层扫描系统中。LRYednc

(本文授权编译自EDN姐妹网站Electronic Products,原文参考链接:Five AI technology trends to watch in medical imaging,由Jenny Liao编译)LRYednc

本文为《电子技术设计》2021年3月刊杂志文章“汽车制造商都想开发自己的操作系统?”,版权所有,禁止转载。免费杂志订阅申请点击这里LRYednc

本文为电子技术设计原创文章,未经授权禁止转载。请尊重知识产权,违者本司保留追究责任的权利。
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
  • 复旦大学研究人员发明晶圆级硅基二维互补叠层晶体管 复旦大学研究团队将新型二维原子晶体引入传统的硅基芯片制造流程,实现了晶圆级异质CFET技术。相比于硅材料,二维原子晶体的单原子层厚度使其在小尺寸器件中具有优越的短沟道控制能力。
  • 西工大打破吉尼斯世界纪录,扑翼式无人机单次充电飞行15 据西北工业大学官宣其扑翼式无人机单次充电飞行时间获得新的吉尼斯世界纪录,认定的纪录时间为 2 小时 34 分 38 秒 62(突破 154 分钟)。本次刷新世界纪录的“云鸮”扑翼式无人机采用了高升力大推力柔性扑动翼设计、高效仿生驱动系统设计和微型飞控导航一体化集成等关键技术,翼展 1.82m,空载起飞重量为 1kg,手抛起飞,滑翔降落,能够按设定航线自主飞行,飞行过程中能实时变更航线。
  • 麻省理工开发出纸一样薄的太阳能电池,每公斤功率是传统 麻省理工学院称其工程师开发出超轻织物太阳能电池,可以快速轻松地将任何表面变成电源。这些耐用、灵活的太阳能电池比人的头发丝细得多,粘在坚固、轻便的织物上,使其易于安装在固定表面上。它们的重量是传统太阳能电池板的百分之一,每公斤产生的功率是传统太阳能电池板的18倍。
  • 英特尔展示下一代半导体器件技术,计划2030年实现万亿级 日前,英特尔在IEDM上展示多项与半导体制造技术相关的研究成果:3D封装技术的新进展,可将密度再提升10倍;超越RibbonFET,用于2D晶体管微缩的新材料,包括仅三个原子厚的超薄材料;能效和存储的新可能,以实现更高性能的计算;量子计算的新进展。此外,英特尔表示,目标是在2030年实现在单个封装中集成一万亿个晶体管。
  • 湖南大学:基于2D的范德华异质结构,可用于晶体管及存储器 电子工程研究的一个关键目标是开发高性能和高能效的计算设备,这意味着它们可以快速计算信息,同时消耗很少的能量。一种可能的方法是将执行逻辑操作的单元和存储组件组合到一个设备中。
  • 上海特斯拉前员工:Model Y生产中降低某项重要工艺规格, 据EDN电子技术设计了解,12月8日上午,账号为Laniakea_1188的微博用户公开举报特斯拉,称上海特斯拉在Model Y车型生产过程中,降低某项重要工艺规格问题线索,并指出如果该项变化的风险评估、白车身验证、整车验证不充分,将不能排除影响承载式车身强度乃至整车安全性的可能。
  • 矽递科技为荷兰养猪场打造基于LoRa®和LoRaWAN®的环 通过物联网技术监测养殖环境,为生猪健康提供有效保障
  • 在美国企业抵制之下,美国将放宽联邦机构及承包商使用中 这议案被视为美国《国防授权法案》(NDAA)的一项修正案,遭到美国商会和其他贸易组织的抵制。这些组织在上个月的一封信中称,企业要确定大量电子产品中的芯片是否是中国企业制造的,成本将很高,难度也很大。
  • 兆易创新瞄准4大行业入局模拟芯片,电源管理全产品组合 随着可穿戴设备、汽车电子、物联网、云计算等新兴应用的蓬勃发展,以及用户对于智能化生活越来越高的追求,同时伴随着工业、储能、5G通信等数字行业的产业升级和持续扩容,作为连接真实世界和数字世界的模拟芯片产品愈发展现广阔的应用潜力,并且市场规模持续增长。
  • 宝马要做太阳能汽车,大众入局氢能源,车企分开走不同新能 在目前的汽车市场中,新能源汽车已成大势所趋,虽然目前以电动汽车和混动汽车为主流,但受电池技术的限制,消费者仍期待更长的续航,更环保的能源也成了厂商关注的焦点,因此氢能源汽车和太阳能汽车也开始走入风口。
  • 台积电1nm制程工艺已实现技术突破,正谋划建1nm工艺工厂 近日有报道称台积电正积极推进1nm制程工艺,并们已在谋划1nm制程工艺工厂的建设事宜,以便按计划量产。早前EDN美国版曾报道台积电1nm制程工艺已实现技术突破,且逐渐成形。
  • 三星黑科技,突破指纹识别区域限制 三星正在研发一项屏幕指纹解锁的新技术,这项新技术可将指纹识别覆盖整个屏幕,无论用户手指放在屏幕的哪个位置,均能实现解锁。
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了