首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
AIoT生态大会
MCU及嵌入式大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
AIoT生态大会
MCU及嵌入式大会
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
什么是杂散干扰、互调干扰、阻塞干扰?
时间:
2023-05-05
作者:
射频学堂
阅读:
分享
扫码分享到好友
三种不同的干扰是如何产生的?又该怎么分析解决?本文将为大家介绍。
Uicednc
杂散干扰
主要是由于接收机的灵敏度不高造成的。发射机输出信号通常为大功率信号,在产生大功率信号的过程中会在发射信号的频带之外产生较高的杂散。如果杂散落入某个系统接收频段内的幅度较高,则会导致接收系统的输入信噪比降低,通信质量恶化。杂散干扰是由发射机产生的,包括功放产生和放大的热噪声、系统的互调产物,以及接收频率范围内收到的其他干扰。
杂散干扰是一个系统频段外的杂散辐射落入到另外一个系统的接收频段内造成的干扰,杂散干扰直接影响了系统的接收灵敏度,要想减弱杂散干扰的影响,要么在发射机上过滤干扰,要么远离干扰。
若杂散落入某个系统接收频段内的幅度较高,被干扰系统接收机系统是无法滤除该杂散信号的,因此必须在发信机的输出口加滤波器来控制杂散干扰。通过干扰分析可以计算出干扰对系统的影响降低到适当程度所需要的隔离度,即灵敏度不明显降低时的干扰水平。在POI合路方案中选择多系统间最大的隔离度要求作为工程需要。
杂散干扰是由发射机产生的,包括功放产生和放大的热噪声、系统的互调产物,以及接收频率范围内收到的其他干扰。
互调干扰
是两个或多个信号作用在通信设备的非线性器件上,产生同有用信号频率相近的频率,从而对通信系统构成干扰的现象。在移动通信系统中产生的互调干扰主要有发射机互调、接收机互调及外部效应引起的互调。
互调干扰,是指当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。
三阶互调干扰
三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。这就是三阶互调干扰。既然会出现三阶,当然也有更
高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。这些互调产物会降低许多通信系统的性能。所表明的是确切含义是,一个线性系统所包含的非线性系数的大小。这个指标对于大动态放大器是一个非常重要的技术指标。测试这项指标使用的测试仪器主要是频谱分析仪。对于不同指标要求的三阶互调失真,需使用不同性能的频谱分析仪,对三阶互调失真要求越高,对频谱分析仪的要求就越高。在60-70dB的三阶互调失真,用Agilent的8591就可以分析。
定量分析
为了提高频道利用率,移动通信系统通常采用多频道共用的组网方式,由M个移动台共用N个频道(M>>N),移动台通过基地台选择的某个空闲频道进行通信,当一个移动通信系统岸N个等间隔配置工作频道时,整个系统的互调干扰大致可分为:由移动台接收机形成的互调干扰;由基地台接收机形成的互调干扰;由基地台发射机互耦形成的互调干扰;由移动台发射机互耦形成的互调干扰;由移动台、基地台发射机互耦、在移动台发射机形成的互调产物对移动台接收的干扰;由基地台、移动台发射机互耦、在基地台发射机形成的互调产物对基地台接收的干扰。下面就上述六类互调干扰做简要的定量分析。
(A)由移动台接收机形成的互调干扰
当基地台几个频道同时发信时,由移动台收信部分前端电路的非线性所产生的互调干扰属于同频干扰。
(B)由基地台接收机形成的互调干扰
当两个或两个以上移动台在临近基地台的区域内同时发信时,同样会使基地台接收机形成互调干扰。这类干扰的EI和EC无关,而式(2)中的D(N,P)项可以不考虑。当EI=EIMAX、EC=ECMIN时,例如有M1、M2、M3和M4四个移动台同时工作,其中M1、M2、M3在基地台附近,而M4在服务区边缘(ECMIN≈ES,ES为接收机的灵敏度指标),
(C)由基地台发射机互耦形成的互调干扰
此类干扰对于本系统移动台属于同频干扰。如果系统的所有频道都在工作,只要互调产物比信号低15dB以上,干扰产物对移动台接收机输出信扰比影响就不大。但若有某个频道不工作,例如对N=4的系统,fBT1、fBT2、fBT3工作,fBT4不工作,三阶互调Ⅱ型产物:fBT2+fBT3-fBT1=fBT4=fMR4,有可能造成移动台接收机错停频道及呼损。对于相邻系统来说,此类干扰属于杂散辐射,必须比在波功率低60dB以上(或小于25uw)。(4)由移动台发射机互耦形成的互调干扰
设基地台附近有两个移动台、在系统服务区边缘有一个移动台同时工作(如图2所示)。由基地台附近的两个移动台发射机互耦形成的互调产物有可能影响基地台对来自服务区边缘的那个移动台信号的正常接收。此类干扰时一种瞬间随机干扰,当移动台较少时,影响不大。
(D)移动台、基地台发射机互耦,在移动台发射机形成的互调产物对移动台接收的干扰
(E)由基地台、移动台发射机互耦、在基地台发射机形成的互调产物对基地台接收的干扰
总之,较严重的干扰是(A)、(B)、(D)类干扰,在进行工程设计时必须认真进行定量分析。
阻塞干扰
当一个较大干扰信号进入接收机前端的低噪放大器时,由于低噪放大器的放大倍数是根据放大微弱信号所需要的整机增益来设定的,强干扰信号电平在超出放大器的输入动态范围后,可能将放大器推入到非线性区,导致放大器对有用的微弱信号的放大倍数降低,甚至完全抑制,从而严重影响接收机对微弱信号的放大能力,影响系统的正常工作。在多系统设计时,只要保证到达接收机输入端的强干扰信号功率不超过系统指标要求的阻塞电平,系统就可以正常工作。
在实际操作现场测试定位干扰源的更具体点的TD-LTE杂散干扰、阻塞干扰、互调干扰排查测试定位方法及工具:
1)由于TD-LTE是时分双工的系统,上下行均采用相同频段,需要准备可以不关闭周边基站可以同步系统并区分,单独测量上下行频谱的TDD频谱仪(如 东莞纳萨斯 的 DONA 无线干扰检测仪),定向天线。
2)到达受干扰站点天面现场采用上行测量模式或无线干扰底噪测量模式进行测量,并设置到受干扰频带起止干扰频带。(若采用非时TDD分频谱仪表,则需要测试前关闭该区域所有TD-LTE基站,不建议用)
3)无线干扰底噪频谱特征显示 若干扰信号 落入受干扰系统工作频带,且呈越接近干扰源工作频率的频率受干扰越大,称为 杂散干扰。本质是由于干扰源的非工作频带杂散抑制能力差或出问题导致干扰了TD-LTE的工作频带,往往与有源器件有关。
4)若干扰源落入工作频带,且为非联系的干扰,特点呈窄带柱状干扰,且符合干扰源源自两个或以上带外频点,符合互调是 2个信号互相作用,会在其他的频点产生的新的信号,比如3阶就在2F1-F2和2F2-F1,5阶就在3F1-2F2和3F2-2F1等等,属于互调干扰,往往与干扰扰源无源器件有关。
5)若检测结果在工作频带内没有受到干扰,但工作频带邻频有很强信号,且受干扰系统的反向频谱呈受干扰特点,且通信的质量受影响,效果降低。符合接收灵敏度损失。称之为阻塞干扰。本质原因为受干扰系统亢阻塞能力不强,可改造或增加与干扰源隔离度解决。
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
符合AUTOSAR标准的RTA-OS--Task详解
下一篇:
高通财报解析:汽车业务成为增长亮点,计算芯片市场竞争加剧
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
合众汽车准备港股IPO:是否能走下去?
合众汽车股份有限公司正式向港交所递交了上市申请,哪吒汽车有望成为国内第五家赴港上市的新势力企业之一。
拆解报告:小米67W 2C1A氮化镓快充插线板
最近充电头网拿到了小米推出的一款快充插线板,其不仅配置有6位AC插孔以及2C1A三个USB接口,而且支持小米私有闪
拆解报告:倍思67W 3C1A快充旅行插座
最近充电头网拿到了倍思67W快充旅行插座,与其它的快充插座产品相比,这款产品设计有其独特之处,将AC插座模块与
5月中国电车充电基础设施市场
截至2024年5月,公共充电桩总计达到304.9万台,其中直流充电桩134.7万台,交流充电桩170.2万台。5月公共充电基础
评测:QCY全能舱MeloBuds Pro TWS耳机
为全面了解该耳机的实际表现,我爱音频网对QCY全能舱MeloBuds Pro进行了详细的测试与体验,主要为外观设计、使
拆解报告:Razer雷蛇噬魂鲨专业极速版无线游戏耳机
雷蛇噬魂鲨专业极速版无线游戏耳机在外观方面,采用了简约设计,黑白配色,与PS5协调一致。耳机头梁支持长短调节,
拆解报告:Marshall马歇尔MINOR IV真无线耳机
Marshall马歇尔MINOR IV真无线耳机是其近期推出的最新一代产品,外观上延续了家族式的经典设计和黑金配色,具有
Rivian的动力系统,4695圆柱电池能打吗?
本文从动力系统的电池和电驱动分别来看下Rivian的设计和开发状态···
评测:小天才Z10电话手表
为完整体验小天才Z10电话手表,我爱音频网从产品包装外观、连接与功能、数据实测三方面进行了详细测试与记录
第27周新能源周销量:环比下降36%进入淡季
2024年第27周(7月1日-7月7日),乘用车总销量33.95万辆,环比下降36%,同比上升1%···
AI等新兴技术正在重塑汽车价值链
最新报告显示,人工智能(AI)和其他新兴技术正在重新塑造整个汽车价值链,从研发到生产,再到销售和售后服务。这些技
什么是时间调制阵列天线?
到底什么是时间调制呢?时间调制阵列究竟是如何实现的呢?
这个世界500强客户的项目居然要同时保证阻抗和损耗误差
国外的一个大客户最近向我们提出了一个比阻抗±5%还能苛刻的要求,他们希望在他们的测试夹具中做到高速线的阻
拆解报告:Nothing CMF Buds真无线降噪耳机
Nothing CMF Buds真无线降噪耳机在外观方面,充电盒采用了与CMF Buds Pro圆形截然相反的矩形设计,但同时加入
人形机器人:AI+机电一体的巅峰
人形机器人作为通用机器人的一种,正从专用场景向通用场景进化,它们不仅代表着技术的前沿,也预示着未来生活方式
拆解报告:QCY意象T13 X真无线耳机
QCY T13 X真无线耳机是一款入门级产品,拥有着非常轻巧迷你的外观设计,轻盈舒适的佩戴体验。下面就来看看这款
评测:vivo WATCH GT智能手表
为了完整体验vivo WATCH GT智能手表,我爱音频网从该产品外观设计、功能使用、数据实测三方面进行了详细测试
5月,这些品牌产品在亚马逊卖爆了
我爱音频网选取了亚马逊耳机销售排行榜前十的无线耳机与大家分享,旨在帮助大家了解无线耳机的全球市场动态,以
LGES向特斯拉供应4680,特斯拉不再自己造电池?
近期有消息说特斯拉要放弃自己生产4680,甚至是放弃4680的技术路线,这个玩笑开得有点大···
瑞萨AI在汽车终端中的使用
实时分析与终端AI技术正在深刻重塑汽车系统的智能化发展路径。依托于高级信号处理与边缘计算的集成,这些技术
无需镇流电阻的MPPT太阳能日光灯设计
由于这一设计大幅提高了太阳能板的电压以容纳30个1W LED完全串联,因而无需使用镇流电阻,就能显著提高灯光效
扒一扒苹果Vision Pro的关键组件:R1芯片为空间计算开辟了新途径
苹果产品系列中的许多其他完整计算平台只需要M系列处理器,因此R1是实现苹果全新视觉计算概念的关键组件,今天
下一代数据的载体?世界上最小尺寸的斯格明子赛道器件单元
最近,安徽大学的研究团队制备出了世界上最小尺寸的斯格明子赛道器件单元,结合高时空分辨原位洛伦兹电镜技术,实
老是测不准? 避免量血压的NG行为
测量血压时不要讲话!因为仪器正在侦听声音脉冲,如果您开口说话,声音可能会干扰到测量的过程···
广告
热门评论
最新评论
换一换
换一换
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
广告
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
无线技术
工业电子
人工智能
EDA/IP/IC设计
制造/工艺/封装
物联网
安全与可靠性
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了