首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2025 中国国际低空经济产业创新发展大会
IIC Shanghai 2025
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
成都低空经济大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
2025 中国国际低空经济产业创新发展大会
IIC Shanghai 2025
2024第五届中国国际汽车电子高峰论坛
IIC Shenzhen 2024
2024MCU及嵌入式大会
2024国际AIoT生态大会
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
电源和信号完整性测试技术中心
泰克智能汽车测试技术中心
福禄克红外热像仪免费试用
芯源半导体MCU技术中心
英飞凌电容感应方案中心
器件射频和材料介电常数测试
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
什么是杂散干扰、互调干扰、阻塞干扰?
时间:
2023-05-05
作者:
射频学堂
阅读:
分享
扫码分享到好友
海报分享
三种不同的干扰是如何产生的?又该怎么分析解决?本文将为大家介绍。
qUdednc
杂散干扰
主要是由于接收机的灵敏度不高造成的。发射机输出信号通常为大功率信号,在产生大功率信号的过程中会在发射信号的频带之外产生较高的杂散。如果杂散落入某个系统接收频段内的幅度较高,则会导致接收系统的输入信噪比降低,通信质量恶化。杂散干扰是由发射机产生的,包括功放产生和放大的热噪声、系统的互调产物,以及接收频率范围内收到的其他干扰。
杂散干扰是一个系统频段外的杂散辐射落入到另外一个系统的接收频段内造成的干扰,杂散干扰直接影响了系统的接收灵敏度,要想减弱杂散干扰的影响,要么在发射机上过滤干扰,要么远离干扰。
若杂散落入某个系统接收频段内的幅度较高,被干扰系统接收机系统是无法滤除该杂散信号的,因此必须在发信机的输出口加滤波器来控制杂散干扰。通过干扰分析可以计算出干扰对系统的影响降低到适当程度所需要的隔离度,即灵敏度不明显降低时的干扰水平。在POI合路方案中选择多系统间最大的隔离度要求作为工程需要。
杂散干扰是由发射机产生的,包括功放产生和放大的热噪声、系统的互调产物,以及接收频率范围内收到的其他干扰。
互调干扰
是两个或多个信号作用在通信设备的非线性器件上,产生同有用信号频率相近的频率,从而对通信系统构成干扰的现象。在移动通信系统中产生的互调干扰主要有发射机互调、接收机互调及外部效应引起的互调。
互调干扰,是指当两个或多个干扰信号同时加到接收机时,由于非线性的作用,这两个干扰的组合频率有时会恰好等于或接近有用信号频率而顺利通过接收机,其中三阶互调最严重。
三阶互调干扰
三阶互调是指当两个信号在一个线性系统中,由于非线性因素存在使一个信号的二次谐波与另一个信号的基波产生差拍(混频)后所产生的寄生信号。比如F1的二次谐波是2F1,他与F2产生了寄生信号2F1-F2。由于一个信号是二次谐波(二阶信号),另一个信号是基波信号(一阶信号),他们俩合成为三阶信号,其中2F1-F2被称为三阶互调信号,它是在调制过程中产生的。又因为是这两个信号的相互调制而产生差拍信号,所以这个新产生的信号称为三阶互调失真信号。产生这个信号的过程称为三阶互调失真。由于F2,F1信号比较接近,也造成2F1-F2,2F2-F1会干扰到原来的基带信号F1,F2。这就是三阶互调干扰。既然会出现三阶,当然也有更
高阶的互调,这些信号不也干扰原来的基带信号么?其实因为产生的互调阶数越高信号强度就越弱,所以三阶互调是主要的干扰,考虑的比较多。不管是有源还是无源器件,如放大器、混频器和滤波器等都会产生三次互调产物。这些互调产物会降低许多通信系统的性能。所表明的是确切含义是,一个线性系统所包含的非线性系数的大小。这个指标对于大动态放大器是一个非常重要的技术指标。测试这项指标使用的测试仪器主要是频谱分析仪。对于不同指标要求的三阶互调失真,需使用不同性能的频谱分析仪,对三阶互调失真要求越高,对频谱分析仪的要求就越高。在60-70dB的三阶互调失真,用Agilent的8591就可以分析。
定量分析
为了提高频道利用率,移动通信系统通常采用多频道共用的组网方式,由M个移动台共用N个频道(M>>N),移动台通过基地台选择的某个空闲频道进行通信,当一个移动通信系统岸N个等间隔配置工作频道时,整个系统的互调干扰大致可分为:由移动台接收机形成的互调干扰;由基地台接收机形成的互调干扰;由基地台发射机互耦形成的互调干扰;由移动台发射机互耦形成的互调干扰;由移动台、基地台发射机互耦、在移动台发射机形成的互调产物对移动台接收的干扰;由基地台、移动台发射机互耦、在基地台发射机形成的互调产物对基地台接收的干扰。下面就上述六类互调干扰做简要的定量分析。
(A)由移动台接收机形成的互调干扰
当基地台几个频道同时发信时,由移动台收信部分前端电路的非线性所产生的互调干扰属于同频干扰。
(B)由基地台接收机形成的互调干扰
当两个或两个以上移动台在临近基地台的区域内同时发信时,同样会使基地台接收机形成互调干扰。这类干扰的EI和EC无关,而式(2)中的D(N,P)项可以不考虑。当EI=EIMAX、EC=ECMIN时,例如有M1、M2、M3和M4四个移动台同时工作,其中M1、M2、M3在基地台附近,而M4在服务区边缘(ECMIN≈ES,ES为接收机的灵敏度指标),
(C)由基地台发射机互耦形成的互调干扰
此类干扰对于本系统移动台属于同频干扰。如果系统的所有频道都在工作,只要互调产物比信号低15dB以上,干扰产物对移动台接收机输出信扰比影响就不大。但若有某个频道不工作,例如对N=4的系统,fBT1、fBT2、fBT3工作,fBT4不工作,三阶互调Ⅱ型产物:fBT2+fBT3-fBT1=fBT4=fMR4,有可能造成移动台接收机错停频道及呼损。对于相邻系统来说,此类干扰属于杂散辐射,必须比在波功率低60dB以上(或小于25uw)。(4)由移动台发射机互耦形成的互调干扰
设基地台附近有两个移动台、在系统服务区边缘有一个移动台同时工作(如图2所示)。由基地台附近的两个移动台发射机互耦形成的互调产物有可能影响基地台对来自服务区边缘的那个移动台信号的正常接收。此类干扰时一种瞬间随机干扰,当移动台较少时,影响不大。
(D)移动台、基地台发射机互耦,在移动台发射机形成的互调产物对移动台接收的干扰
(E)由基地台、移动台发射机互耦、在基地台发射机形成的互调产物对基地台接收的干扰
总之,较严重的干扰是(A)、(B)、(D)类干扰,在进行工程设计时必须认真进行定量分析。
阻塞干扰
当一个较大干扰信号进入接收机前端的低噪放大器时,由于低噪放大器的放大倍数是根据放大微弱信号所需要的整机增益来设定的,强干扰信号电平在超出放大器的输入动态范围后,可能将放大器推入到非线性区,导致放大器对有用的微弱信号的放大倍数降低,甚至完全抑制,从而严重影响接收机对微弱信号的放大能力,影响系统的正常工作。在多系统设计时,只要保证到达接收机输入端的强干扰信号功率不超过系统指标要求的阻塞电平,系统就可以正常工作。
在实际操作现场测试定位干扰源的更具体点的TD-LTE杂散干扰、阻塞干扰、互调干扰排查测试定位方法及工具:
1)由于TD-LTE是时分双工的系统,上下行均采用相同频段,需要准备可以不关闭周边基站可以同步系统并区分,单独测量上下行频谱的TDD频谱仪(如 东莞纳萨斯 的 DONA 无线干扰检测仪),定向天线。
2)到达受干扰站点天面现场采用上行测量模式或无线干扰底噪测量模式进行测量,并设置到受干扰频带起止干扰频带。(若采用非时TDD分频谱仪表,则需要测试前关闭该区域所有TD-LTE基站,不建议用)
3)无线干扰底噪频谱特征显示 若干扰信号 落入受干扰系统工作频带,且呈越接近干扰源工作频率的频率受干扰越大,称为 杂散干扰。本质是由于干扰源的非工作频带杂散抑制能力差或出问题导致干扰了TD-LTE的工作频带,往往与有源器件有关。
4)若干扰源落入工作频带,且为非联系的干扰,特点呈窄带柱状干扰,且符合干扰源源自两个或以上带外频点,符合互调是 2个信号互相作用,会在其他的频点产生的新的信号,比如3阶就在2F1-F2和2F2-F1,5阶就在3F1-2F2和3F2-2F1等等,属于互调干扰,往往与干扰扰源无源器件有关。
5)若检测结果在工作频带内没有受到干扰,但工作频带邻频有很强信号,且受干扰系统的反向频谱呈受干扰特点,且通信的质量受影响,效果降低。符合接收灵敏度损失。称之为阻塞干扰。本质原因为受干扰系统亢阻塞能力不强,可改造或增加与干扰源隔离度解决。
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
符合AUTOSAR标准的RTA-OS--Task详解
下一篇:
高通财报解析:汽车业务成为增长亮点,计算芯片市场竞争加剧
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
详解天线的近场和远场
天线的近场和远场,犹如无线通信世界的两极,各自有着独特的特性和重要作用。
腾讯智慧出行方案:车云一体+高性能算力双重战略
腾讯智慧出行以高性能算力、精准数据闭环和可迭代AI模型为核心,通过“腾讯混元+DeepSeek”双引擎和车云一体
越南2025年3月:VinFast领跑,中国品牌缺席
2025年3月的越南汽车市场展现了电动化与传统燃油车并存的动态格局。VinFast凭借本土优势和电动车产品力领跑
拆解报告:迈源电气3500W新能源汽车车载充电机
迈源电气新能源汽车车载充电机支持3500W输出功率,为220V交流输入,输出电压范围为250-500V,最大输出电流为10A,充
拆解报告:绿联500W氮化镓充电器
绿联500W氮化镓充电器内置有源桥、交错PFC和AHB拓扑,并内置英诺赛科氮化镓芯片,从多个环节降低损耗,提高转换效
比亚迪2025年一季度的全球终端销量
比亚迪需继续优化区域战略: 在欧洲,应对欧盟关税和本土竞争需加快本地化生产并推出更多高端车型···
拆解报告:LAWK李未可City AI智能眼镜
LAWK李未可City AI智能眼镜在外观方面,银色飞行员镜框,佩戴时尚潮流;钢琴级烤漆材质镜腿,质感出色;双耳弧设计,搭
开灯那刻,我竟和宇宙对话了?
奥特曼的光来自哪里?我们能否在现实中,以不同的方式“召唤”这种光?
拆解报告:Ulanzi优篮子A100无线领夹麦克风
Ulanzi优篮子A100无线领夹麦克风在外观方面,接收器采用了模块化设计,搭配各种接口的转接头,实现多种录制设备的
利润暴跌40%,大众汽车集团电动化转型进入攻坚阶段
2025年第一季度的财报,传统燃油车盈利已触顶,新能源车短期内尚难支撑利润,软件能力尚处爬坡期,国际环境日趋复杂
拆解报告:aigo爱国者S21无线领夹麦克风
aigo爱国者S21无线领夹麦克风在外观方面,整体体积在主流产品中较为轻巧,提供了更好的便携性。麦克风采用了长
拆解报告:Jmoon极萌氮化镓超声美容仪JCS10
极萌超声美容仪外观设计时尚,同时配备提升交互体验的显示屏以及功能模式键,还做到刀炮头合一不用换头,让用户拥
高端光环不灵了?梅赛德斯-奔驰2025年Q1业绩下降
奔驰品牌在高端领域保持强势地位(相比宝马和奥迪),并持续推进电动化和软件平台建设,但现实的数据说明:全球豪华车
美国电动汽车市场:3月抢购潮,一季度数据分析
2025年3月,美国电动汽车市场在HEV、PHEV和BEV的共同推动下保持强劲增长,PEV市场份额接近10%,当然后续怎么样我
拆解报告:云深处168W机器人锂电池充电器C300
近期充电头网拿到了云深处一款用于为自家机器人锂电池充电的充电器C300,支持33.6V5A 168W的功率功率。与一般
人形机器人5万亿美元市场崛起,中国将成为主导者?
人形机器人不是一次消费电子迭代,而是一场深刻的工业与社会基础设施重构。未来,谁能控制“大脑算法 + 本体制
拆解报告:TOZO NC9真无线降噪耳机
TOZO NC9真无线降噪耳机在外观方面,延续了独特的系列设计风格。圆角方形充电盒,体积小巧轻盈,便于携带;搭载有LE
燃油车如何做智能化:一汽奥迪与华为乾崑的结合
一汽奥迪通过PPC豪华燃油平台、E³ 1.2电子电气架构和华为乾崑智驾技术的融合,开创了燃油车智能化的新路径,“
拆解报告:Baseus倍思Bowie MF1开放式耳机
Baseus倍思Bowie MF1开放式耳机在外观方面,融合了前几代产品的特点和优势,扁平充电盒,体积轻薄,便于携带。耳挂
2025年4月中国车企加速渗透土耳其市场:比亚迪Seal U打响突围战
2025年4月,土耳其市场的爆发式增长为全球车企提供了重要信号:新兴市场正在进入电动化转型的加速期,而土耳其作
2025松山湖中国IC创新高峰论坛:继续聊聊机器人
去年的主题是智慧机器人,今年的主题仍然聚焦于机器人身上,不过变为了具身智慧机器人……
鹏瞰TS-PON Gen2芯片,用光协议重塑机器人“神经网络”?
TS-PON Gen2芯片是一款灵活的软件定义 SoC,适用于多种场景。它基于无源光网(PON)技术,具备高带宽(目前10G,未来
让人形机器人“耳聪目明”,昆泰芯KTM5900磁性编码器解析
编码器芯片作为机器人的核心传感器之一,对于提升机器人的感知能力、安全性和生产效率具有重要意义···
如何让具身机器人“看”得清?思特威给出了这个答案
相比于滚动快门传感器,全局快门传感器能够同时曝光整个画面,有效避免了运动过程中产生的图像形变,为机器视觉提
广告
热门评论
最新评论
换一换
换一换
广告
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
工业电子
制造/工艺/封装
无线技术
人工智能
安全与可靠性
EDA/IP/IC设计
测试与测量
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了