首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
图集
全部标签
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
视频工作室
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
NEW
AIoT生态大会
MCU及嵌入式大会
标题
简介
内容
作者
全部
标题
简介
内容
作者
全部
首页
资讯
模拟/混合信号
嵌入式系统
处理器/DSP
测试与测量
电源管理
通信
PCB设计
EDA/IP/IC设计
医疗电子
消费电子
汽车电子
工业电子
手机设计
物联网
人工智能
EDN原创
创新/创客/DIY
FPGA
eeTV
技术杂谈
芯品汇
技术
实例
芯品汇
资源
视频中心
在线研讨会
EE直播间
资料下载
小测验
供应商资源
ASPENCORE学院
社区
论坛
博客
问答
下载中心
评测中心
面包芯语
技术文库
E币商城
社区活动
ASPENCORE学院
活动
IIC Shanghai 2024
IIC Shenzhen 2023
2023第四届中国国际汽车电子高峰论坛
IIC Shanghai 2023
2023全球 MCU 生态发展大会
2023(第四届)国际 AIoT 生态发展大会
更多行业及技术活动
工程师社群活动
专题
用于电路分析和设计的SPICE仿真指南
QSPICE电子电路仿真系列教程
电力电子笔记
数字电子基础
技术子站
是德科技 新能源汽车三电测试技术中心
西门子EDA 3D IC设计解决方案
车载总线测试和解码
Microchip 视频与资源中心
NI最新射频仪器专区
西门子EDA中心
汽车电子专题
E聘
AIoT生态大会
MCU及嵌入式大会
×
杂志声明
我司杂志提供免费订阅,任何第三方平台的赠送或售卖行为均未获得我司授权,我司保留追究其法律责任的权利!
广告
什么是ACLR?
时间:
2023-08-16
作者:
射频学堂
阅读:
分享
扫码分享到好友
在射频设计中,我们经常会遇到各种各样的系统指标,比如EVM,VSWR,NF,ACLR等等,这么多的缩写搞得人云里雾里,尤其是对很多刚入门的同学来说,不懂这些缩写的意思,有时候很难理解大牛们在说什么?
在射频设计中,我们经常会遇到各种各样的系统指标,比如
EVM
,
VSWR
,NF,ACLR等等,这么多的缩写搞得人云里雾里,尤其是对很多刚入门的同学来说,不懂这些缩写的意思,有时候很难理解大牛们在说什么?
今天射频学堂再和大家一起抽丝剥茧一个射频指标——
ACLR
。
ACLR的定义
和其他的指标一样,ACLR也是一个英语全称的缩写——
A
djacent
C
hannel
L
eakage
R
atio, 看到全称之后是不是意思就明了了:
邻道泄露比
。
还有一个和它一样意思的射频指标,叫做
ACPR
,全称
A
djacent
C
hannel
P
ower
R
atio,
邻道功率比。
虽然名称不同,但是ACLR和ACPR所表示的意思是一样的,都是指主信道功率和相邻信道功率的比值。一般情况下,在基站设计中,常采用ACLR作为系统指标,而终端设计中,常采用ACPR作为系统指标。
在一个射频系统的工作频带OBW内,可以分为多个信道,每个信道载波的带宽称为CBW,当其中一个信道作为主信道工作的时候,由于系统非线性的影响,载波信号会泄露在相邻信道,主信道和相邻信道的功率比就是ACLR. 公式如下:
ACLR一般采用
dBc
的格式,所以呢,利用相邻信道功率(dBm)减去主信道功率(dBm)即可。
ACLR的影响
ACLR的定义非常简单明了,但是如果ACLR的指标不好,会对系统有哪些影响呢?
最直接的影响就是在主信道的相邻信道上有一个非常大的未知信号,如果附近的通信系统刚好工作在相邻信道上,那么这个未知信号就会对这个通信系统造成很大的干扰,这个巨大的干扰将会使这个通信系统带来比较大的影响,甚至无法工作。
另一方面,根据功率守恒定理,如果在相邻通道上有比较大的泄露功率,那么主信道的功率就会减小,通信系统的效率就会比较低,从而造成比较大的功耗问题。
ACLR的系统要求
所以呢,对于所有的无线通信系统,都有严格的ACLR的要求,尤其是在基站中,比如对于LTE 第四代通信系统,在 3GPP TS 36.141 version 9.12.0 Release 9 中对LTE发射机的ACLR有明确的要求:ACLR>44.2dBc
在5G NR中,对ACLR有了更高的要求,一般情况下,基站的ACLR要大于45dB。详见 3GPP TS 38.104 version 15.2.0 Release 15 中对ACLR的要求。
相应的,在UE端,应为发射功率更低,所以一般ACLR的要求会低一些,比如在3GPP TS 38.101-1 version 15.2.0 Release 15 给出的UE 端 ACLR的指标要求。
所以,对于ACLR的要求,不同的无线系统有不同的定义,同学们在设计的时候,一定要根据相应无线通信标准的定义,设计满足要求的射频系统。
如何改善系统的ACLR?
导致ACLR恶化的因素有很多,但是影响最大的还是PA的非线性。因为邻道功率的泄露,本身就是由于系统的非线性引起的。
如下图所示,我们把一个载波信号分成几个子载波,由于非线性的影响,每两个子载波都会在载波的左右两侧各产生一个互调信号,这个互调信号就造成了相邻信道的功率填充。在ADI的一篇TA上,给出了ACLR和IMD的关系,如果已知子载波的功率和IMD的功率,就可以计算出ACLR的值。
如果功率放大器的输出功率过高,接近压缩点,那么在相邻通道中产生的IIP3和IIP5产品的功率也会过高。并且这些高功率IMD产物刚好落在相邻通道,就会导致高ACLR。这就是在最大功率下发生不良ACLR的原因。
在这种情况下,为了改善ACLR,首要任务是改善PA的线性,这时,可以通过降低PA的输出功率,是PA工作在线性区,或者通过DPD来改善PA在高功率下的线性度;或者呢,选用更高线性的PA。
第二点可以通过改善PA后端器件的损耗,比如滤波器,比如天线。这里的损耗既包括回波损耗,也包括插入损耗。
从上文降低PA输出功率可以改善ACLR这一点来说,后级滤波器天线的低插损,可以保证PA在输出低功率下也能满足系统的功率要求;另一方面PA输出口良好的匹配,不仅保证了信号功率能够最大的传输,也保证了反射功率对系统的影响最低,尤其是对DPD的影响。
这一点可以通过后级良好的级联匹配,以及选用低损耗的元件和PCB来实现。
第三点就是保证干净的PA输入。有源器件的非线性会产生互调失真,无论在PA端,还是在前面Tx中,都会产生。如果在前面Tx链路中就有比较大的互调失真,那么经过PA放大后,其对系统的影响将会变大。这种情况下,可以在PA前级加入信道滤波器来过滤前级产生的互调失真,以此来改善这个射频发射链路的ACLR性能。
参考阅读
(这些参考网站也是很不错的学习资源,复制网址粘贴在浏览器中即可打开阅读)
1,https://www.techplayon.com/aclr-acpr/;
2,https://www.techplayon.com/how-to-get-better-aclr-in-tx-chain/;
3,https://www.rfinsights.com/insights/design/transmitter/tx-aclr-breakdown/;
4,https://www.analog.com/en/analog-dialogue/articles/nonlinear-simulation-of-rf-ic-amplifiers-in-keysight-genesys-and-systemvue.html;
5,https://www.everythingrf.com/community/what-is-acpr-or-aclr;
6,https://www.rfpage.com/aclr-measurement-in-lte/;
7,https://www.analog.com/en/technical-articles/adjacent-channel-leakage-ratio-aclr-derivation-for-general-rf-devices.html;
8,https://www.rfwireless-world.com/Terminology/ACPR-vs-ACLR.html;
9,https://rfmw.em.keysight.com/rfcomms/refdocs/wcdma/wcdma_meas_aclr_desc.html;
10,https://ww2.mathworks.cn/help/comm/ug/adjacent-channel-power-ratio-acpr.html;
11,https://zhuanlan.zhihu.com/p/601477686;
12,https://windmissing.github.io/communications-technology/DPD_PA/2020-11-18-ACLR.html;
13,https://ieeexplore.ieee.org/document/9531697;
责编:Ricardo
文章来源及版权属于射频学堂,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系
Demi.xia@aspencore.com
阅读全文,请先
射频学堂
学无线,学射频,就来【射频学堂】!射频学堂专注于无线通信射频技术学习和科普,致力于传播无线射频知识,分享各种学习资料,助力全体无线射频人……
进入专栏
分享到:
返回列表
上一篇:
基于AUTOSAR的智能车域控制器网络管理功能实现
下一篇:
射频和微波课程资料网址大全
微信扫一扫
一键转发
最前沿的电子设计资讯
请关注
“电子技术设计微信公众号”
推荐内容
兴趣推荐
半导体行业新动向:2024年上半年并购事件汇总
在本文中,我们将回顾2024年上半年半导体行业的重大并购事件,通过对这些并购案例的剖析,我们可以更好地理解半导
拆解报告:声阔Sport X20真无线降噪耳机
声阔Sport X20真无线降噪耳机支持AI通话降噪功能,基于6麦克风系统,搭配AI降噪算法,提供清晰地通话。下面就来看
6月吉利终端销量:新能源品牌表现亮眼
根据目前的数据,6月吉利集团的总体销量为12.35万(同比增长1.4%),1-6月累计为72.6万(同比增长29.5%)···
拆解报告:BOSCH博世GO电动螺丝刀
这款螺丝刀还采用金属手提箱包装,不仅配置全面,自用或送人都更加提升档次。在螺丝刀手柄上设有正反转开关,电量
拆解报告:绿联65W 2C1A超薄氮化镓充电器
近期知名3C配件品牌绿联又推出了一款绿联65W超薄氮化镓充电器,其不仅在超薄机身情况下配置了主流2C1A接口,而
拆解报告:红魔液冷散热器5pro
努比亚旗下的电竞品牌红魔,推出了红魔液冷散热器5Pro,这款磁吸散热器采用手机中使用的VC液冷片,搭配定制大面积
LGES向特斯拉供应4680,特斯拉不再自己造电池?
近期有消息说特斯拉要放弃自己生产4680,甚至是放弃4680的技术路线,这个玩笑开得有点大···
拆解报告:PHILIPS飞利浦TAT1209真无线耳机
PHILIPS飞利浦TAT1209真无线耳机在外观方面,整机设计非常的小巧轻盈,重量仅为29.9g,外出使用非常便携,下面就来
信号链芯片的眼图和抖动测试
抖动和眼图是高速串行信号的必测项目。抖动可以评估时钟或信号的稳定性,眼图可以综合评估信号的抖动,幅度,反射
电动汽车充电器新标配:触摸显示屏,可靠耐用是关键
根据国际能源署(IEA)的预测,到2030年,全球电动汽车保有量将扩充到近3.5亿辆。要让这些车辆为车主提供最大的实用
长城汽车智能驾驶的发展和迭代
长城的智能驾驶的方案是演进过来的,从供应商体系来看,是从采埃孚和安波福的基础上增加自研的部分。所以出现了
这个世界500强客户的项目居然要同时保证阻抗和损耗误差
国外的一个大客户最近向我们提出了一个比阻抗±5%还能苛刻的要求,他们希望在他们的测试夹具中做到高速线的阻
拆解报告:JBL Quantum Stream Wireless无线领夹麦克风
此次拆解的JBL Quantum Stream Wireless(风语者),是近期发布的一款新品,专为手机、平板、笔记本等移动设备设计,
宝马取消订单,电池厂商Northvolt还有机会吗?
宝马集团宣布取消一笔价值20亿欧元(约合155.60亿元人民币)的电动汽车电池订单,原本由瑞典电池制造商Northvolt
数据中心崛起:带动美国商业电力需求增长
近年来,美国商业部门的电力消耗量显著增长。根据美国能源信息署(EIA)的数据,2023年美国商业电力需求总量达到140
双向收发的信号应该在哪进行串联端接?分享几个实用设计方法
总有一些信号类型会让你意外,例如那么一种场景,速率同样是几百兆以下的不算很高速的信号,但是不是单向传输,而是
5月中国电车充电基础设施市场
截至2024年5月,公共充电桩总计达到304.9万台,其中直流充电桩134.7万台,交流充电桩170.2万台。5月公共充电基础
拆解报告:Apple Vision Pro原装外接电池
Apple Vision Pro电池组采用全铝合金外壳,外壳严丝合缝,整体圆润风格。下面充电头网就带来Apple Vision Pro电
拆解报告:科大讯飞AI翻译笔P20 Plus
科大讯飞AI翻译笔P20 Plus在外观设计方面,采用了一体化黑色面板,金属机身,整体做工精致,体积小巧,握持使用舒适。
2024年上半年热销的新能源车型有哪些?
24年对于中国汽车产业来说是转折的一年,整个格局都在重塑···
无需镇流电阻的MPPT太阳能日光灯设计
由于这一设计大幅提高了太阳能板的电压以容纳30个1W LED完全串联,因而无需使用镇流电阻,就能显著提高灯光效
扒一扒苹果Vision Pro的关键组件:R1芯片为空间计算开辟了新途径
苹果产品系列中的许多其他完整计算平台只需要M系列处理器,因此R1是实现苹果全新视觉计算概念的关键组件,今天
下一代数据的载体?世界上最小尺寸的斯格明子赛道器件单元
最近,安徽大学的研究团队制备出了世界上最小尺寸的斯格明子赛道器件单元,结合高时空分辨原位洛伦兹电镜技术,实
老是测不准? 避免量血压的NG行为
测量血压时不要讲话!因为仪器正在侦听声音脉冲,如果您开口说话,声音可能会干扰到测量的过程···
广告
热门评论
最新评论
换一换
换一换
热门推荐
广告
广告
EE直播间
更多>>
在线研讨会
更多>>
学院
录播课
直播课
更多>>
更多>>
更多>>
更多>>
广告
最新下载
最新帖子
最新博文
广告
面包芯语
更多>>
热门TAGS
产业前沿
消费电子
技术实例
EDN原创
电源管理
新品
汽车电子
处理器/DSP
通信
传感器/MEMS
模拟/混合信号/RF
无线技术
工业电子
人工智能
EDA/IP/IC设计
制造/工艺/封装
物联网
安全与可靠性
查看更多TAGS
广告
×
向右滑动:上一篇
向左滑动:下一篇
我知道了