广告

OpenCV手势识别方案--基于米尔全志T527开发板

2024-12-13 米尔电子 阅读:
基于米尔电子MYD-LT527开发板(米尔基于全志 T527开发板)的OpenCV手势识别方案测试

本文将介绍基于米尔电子MYD-LT527开发板(米尔基于全志 T527开发板)的OpenCV手势识别方案测试。摘自优秀创作者-小火苗Q4lednc

Q4lednc

米尔基于全志T527开发板

一、软件环境安装

1.安装OpenCV

sudo apt-get install libopencv-dev python3-opencvQ4lednc

Q4lednc

2.安装pip

sudo apt-get install python3-pipQ4lednc

Q4lednc

OpenCV手势识别步骤Q4lednc

1.图像获取:从摄像头或其他图像源获取手部图像。使用OpenCV的VideoCapture类可以捕获视频流,或者使用imread函数加载图像。Q4lednc

2.图像预处理:对图像进行预处理,以提高特征提取的准确性。常用的预处理操作包括灰度化、滤波、边缘检测、二值化、噪声去除和形态学处理等。Q4lednc

灰度化:将彩色图像转换为灰度图像,去除颜色信息,简化图像。Q4lednc

滤波:使用滤波器去除图像中的噪声。Q4lednc

边缘检测:使用边缘检测算法提取图像中的边缘信息。Q4lednc

二值化:将灰度图像转换为二值图像,将像素值分为黑色和白色。Q4lednc

形态学处理:使用形态学操作增强手势轮廓。Q4lednc

3.特征提取:从预处理后的图像中提取手部特征。常用的特征包括形状特征、纹理特征和运动轨迹特征等。Q4lednc

形状特征:提取手部轮廓、面积、周长、质心等形状特征。Q4lednc

纹理特征:提取手部皮肤纹理、皱纹等纹理特征。Q4lednc

运动轨迹特征:提取手部运动轨迹、速度、加速度等运动轨迹特征。Q4lednc

4.分类和识别:使用机器学习算法对提取的特征进行分类,以识别特定的手势。Q4lednc

代码实现

# -*- coding: utf-8 -*-Q4lednc

import cv2Q4lednc

def reg(x):Q4lednc

    o1 = cv2.imread('paper.jpg',1)Q4lednc

    o2 = cv2.imread('rock.jpg',1)Q4lednc

    o3 = cv2.imread('scissors.jpg',1)  Q4lednc

    gray1 = cv2.cvtColor(o1,cv2.COLOR_BGR2GRAY) Q4lednc

    gray2 = cv2.cvtColor(o2,cv2.COLOR_BGR2GRAY) Q4lednc

    gray3 = cv2.cvtColor(o3,cv2.COLOR_BGR2GRAY) Q4lednc

    xgray = cv2.cvtColor(x,cv2.COLOR_BGR2GRAY) Q4lednc

    ret, binary1 = cv2.threshold(gray1,127,255,cv2.THRESH_BINARY) Q4lednc

    ret, binary2 = cv2.threshold(gray2,127,255,cv2.THRESH_BINARY) Q4lednc

    ret, binary3 = cv2.threshold(gray3,127,255,cv2.THRESH_BINARY) Q4lednc

    xret, xbinary = cv2.threshold(xgray,127,255,cv2.THRESH_BINARY) Q4lednc

    contours1, hierarchy = cv2.findContours(binary1,Q4lednc

                                                  cv2.RETR_LIST,Q4lednc

                                                  cv2.CHAIN_APPROX_SIMPLE)  Q4lednc

    contours2, hierarchy = cv2.findContours(binary2,Q4lednc

                                                  cv2.RETR_LIST,Q4lednc

                                                  cv2.CHAIN_APPROX_SIMPLE)  Q4lednc

    contours3, hierarchy = cv2.findContours(binary3,Q4lednc

                                                  cv2.RETR_LIST,Q4lednc

                                                  cv2.CHAIN_APPROX_SIMPLE)  Q4lednc

    xcontours, hierarchy = cv2.findContours(xbinary,Q4lednc

                                                  cv2.RETR_LIST,Q4lednc

                                                  cv2.CHAIN_APPROX_SIMPLE)  Q4lednc

    cnt1 = contours1[0]Q4lednc

    cnt2 = contours2[0]Q4lednc

    cnt3 = contours3[0]Q4lednc

    x = xcontours[0]Q4lednc

    ret=[]Q4lednc

    ret.append(cv2.matchShapes(x,cnt1,1,0.0))Q4lednc

    ret.append(cv2.matchShapes(x,cnt2,1,0.0))Q4lednc

    ret.append(cv2.matchShapes(x,cnt3,1,0.0))Q4lednc

    max_index = ret.index(min(ret))  #计算最大值索引Q4lednc

    if max_index==0:Q4lednc

        r="paper"Q4lednc

    elif max_index==1:Q4lednc

        r="rock"Q4lednc

    else:Q4lednc

        r="sessiors"Q4lednc

    return rQ4lednc

t1=cv2.imread('test1.jpg',1)Q4lednc

t2=cv2.imread('test2.jpg',1)Q4lednc

t3=cv2.imread('test3.jpg',1)Q4lednc

# print(reg(t1))Q4lednc

# print(reg(t2))Q4lednc

# print(reg(t3))Q4lednc

# ===========显示处理结果==================Q4lednc

org=(0,60)Q4lednc

font = cv2.FONT_HERSHEY_SIMPLEXQ4lednc

fontScale=2Q4lednc

color=(255,255,255)Q4lednc

thickness=3Q4lednc

cv2.putText(t1,reg(t1),org,font,fontScale,color,thickness)Q4lednc

cv2.putText(t2,reg(t2),org,font,fontScale,color,thickness)Q4lednc

cv2.putText(t3,reg(t3),org,font,fontScale,color,thickness)Q4lednc

cv2.imshow('test1',t1)Q4lednc

cv2.imshow('test2',t2)Q4lednc

cv2.imshow('test3',t3)Q4lednc

cv2.waitKey()Q4lednc

cv2.destroyAllWindows()Q4lednc

实践

1.程序运行

Q4lednc

2、原始图像包含训练图像

Q4lednc

识别结果

识别到了 剪刀 石头 布Q4lednc

Q4lednc

原始图片Q4lednc

Q4lednc

米尔T527开发板7折起,点击链接了解更多:Q4lednc

https://detail.tmall.com/item.htm?id=758523182967Q4lednc

责编:Demi
文章来源及版权属于米尔电子,EDN电子技术设计仅作转载分享,对文中陈述、观点判断保持中立,不对所包含内容的准确性、可靠性或完整性提供任何明示或暗示的保证。如有疑问,请联系Demi.xia@aspencore.com
  • 微信扫一扫
    一键转发
  • 最前沿的电子设计资讯
    请关注“电子技术设计微信公众号”
广告
广告
热门推荐
广告
广告
EE直播间
在线研讨会
广告
面包芯语
广告
向右滑动:上一篇 向左滑动:下一篇 我知道了